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There has recently been considerable interest in the use of conventional NMR pulse sequences. The potential role o
nuclear magnetic resonance (NMR) as a technology for the imple-  quantum computing as a source of new insights into NMR is
mentation of small quantum computers. These computers operate  z|so briefly addressed.
by the laws of quantum mechanics, rather than classical mechan-
ics and can be used to implement new quantum algorithms. Here
we describe how NMR in principle can be used to implement all 1.1. Bits and Qubits
the elements required to build quantum computers, and draw
comparisons between the pulse sequences involved and those of The basic unit of information in a classical computer is

more conventional NMR experiments. © 1998 Academic Press the bit, which can take one of two values, 0 and 1. Bits are
Key Words: NMR; quantum computer; qubit; logic gate; con- then connected together by logic gates to form logic circuits
trolled NOT. which can implement more complex logic operations, suct

as addition. Developments in classical computers have bee
driven by developments in the design and construction o
1. INTRODUCTION logic gates, which have steadily become smaller, faster, an
. o e . _ cheaper. However, this process is beginning to reach

It is well known that it is difficult to simulate the behav'oro_];jundamental limit, as logic gates are reduced in size tc

a q_uantum_mechamcal system with a classical compute_r. Dmic dimensions. Progress beyond this limit will require a
difficulty arises because quantum systems are not confine erent approach

their eigenstates but can in general exist in any superposition ofy " (oo possibility is to implement bits and logic

them; thus the vector space needed_to describe the S.y.SterBal%s using atomic components. A bit can be implemente
extremely large. For example, a spin system comprigihg using any two state device, such as the two quantum state

spin- nuclei occupies a Hilbert space with' Zimensions. For of a two-level system. For example the two Zeeman levels
this reason it is impractical to simulate the behavior of SpWrolé> and |8), of a 'H nucleus in a magnetic field can be
systems with more than about a dozen nuclei. ’

. . ._naturally described as a bit. Similarly a spin system con
In 1982, Feynmanl] reversed this observation, SqueStmgaining N distinct *H nuclei can be modeled as a set of
that quantum mechanical systems have a potentially very Iarkgf:

S. Traditionally the lower and er energy levels are
information processing ability. Thus it should be possible Qterred tcl) IaéO) gnd|1) rvéspectiveulsp gy eV

build quantum mechanical computers which utilize this ability The time evolution of a spin-system system under som

to achieve a computing power well beyond that of CorreSponlg\'amiltonian is described by a series of unitary transformations

ing classical systems. The theory of such quantum COMPUETIIY 5o is of necessity reversible. Hence any quantum mecha
now fairly well understood, but it has proven extremely diffi-

. .Jcal computer can only implement reversible operations an
cult to actually build one. Recently, however, attempts to bwﬁ P y Imp P

ters based the NMR i ¢ I lecul ust be built from reversible logic gates. This is not an
computers based on e properties of smafl molecu ﬁﬁportant restriction, as it has been shown that reversible logi
have exhibited considerable succe®si().

: L ates can be used to efficiently simulate traditional gates, an
In this paper we seek to place recent results in this field

o . ) us reversible computers are just as powerful as their irrever:
the context of more traditional NMR experiments. In part|cul%Ie counterparts1?, 13

Xve descnbte ,,hOW I_\Il\/(Ith can bte u:[sed tot |mplemen'i all the There is, however, much more to quantum computers tha
dcomponen S requws i 0 cons ruct qualm um cotmpu e;s, a‘ﬂge implementation of classical algorithms using reversible
raw comparisons between quantum logic gates an m%ﬁic: guantum computers are also capable of implementing

1To whom correspondence should be addressed at the New Chemi&§W types of quantum mechanical algorithnd {17, with
Laboratory. E-mail: jones@bioch.ox.ac.uk. potentially enormous powers. This occurs because a twc

353 1090-7807/98 $25.00
Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.



354 JONES, HANSEN, AND MOSCA

level quantum system is not confined to its two eigenstates,Consider first the eigenstatg6) and|1). These correspond
but can exist in superpositions of these two states; that ig,the density matrices
the system is not confined 46) and |1), but can exist in
states such as 10
ox0l=( g o) =2E+1, 2

Col0) + ¢4 1), [1]

and |1X1] = %E — 1, respectively. Multiples of the unit
wherec, andc, are complex numbers andic, + c’c, = 1.matrix can be added to density matrices at will without effect-
A nucleus in such a state is not really in state 0 or state ing any NMR observable in any way, and so as far as any NMF
but is in both states simultaneously. For this reason,experiment is concerned the density mattjxs equivalent to
two-level quantum system is more than a simple bit and 8, while —1, is equivalent td1). This simple approach is not,
better described as a quantum mechanical bit, or qubit. @wever, applicable to larger spin systems.
spin system wittN nuclei containd\ qubits and can be in a Next consider superpositions, such # ¢ |1))/\V/2, with
superposition of up to"2 states. This ability to be in a largeits corresponding density matrix
number of states simultaneously gives quantum computers
an intrinsic parallelism, which is exploited in quantum al-
gorithms. (

NI NI

):§E+|X. [5]

NI NP

1.2. Qubits and NMR Spin States

Traditional designs for quantum computers compKsevo- On_ce aggin multiples of the unit matrix_can be ignored, r_;md S
level systems which are coupled to one another and have sdméS €duivalent to [0) + [1))V/2. Similarly [0) + i[1) is
specific interaction with the outside world (so that they can gluivalent tol,, while [0) — [1) is equivalent to-1,. Just as
monitored and controlled) but are otherwise isolated. NMRUPIt €igenstates are closely related to populations, superpos
systems are, by contrast, rather different. In particular, a typidigns are closely related to NMR coherences.

NMR sample comprises not just one spin system, but a veryl.2.2. Two-qubit states.While the relationship between
large number of copies, one from each molecule in the sampieibit states and NMR states is simple for one qubit (one-spil
Thus while quantum computers are usually described usiggstems), this relationship is much more complicated in sys
Dirac’s bra and ket notation, NMR systems are described usit&jns with two or more qubits. Indeed, the problem of creating
a density matrix, usually written in the product operator basi$MR states corresponding to multi-qubit eigenstates prevente
(18), which has a number of important consequences. Whilepitogress in the implementation of NMR quantum computers
is possible to draw close analogies between the statesf@fmany years.

traditional quantum computers and those of NMR systems, it isTypically quantum algorithms start with all qubits in state
necessary to proceed with some caution. |0y, which for a two-qubit computer is the stal@0). The

1.2.1. One-qubit states.A single qubit can be in either of orresponding density matrix
its two eigenstates$0) and|1), or in some linear superposition

of them. Such a state is most conveniently written as a column 1000
vector in Hilbert space: for example, the state described in Eq. 100)(00| = 0 00O (6]
[1] is written as 0 00O
0 00O
Co
Iy = c,) [2] is quite different from the thermal equilibrium density matrix
As mentioned above, NMR quantum computers cannot be 100 O
properly described in this way, as they contain an ensemble of I+, - 000 O 7]
spin systems, rather than a single one. Instead they must be z 000 O
described using the corresponding density matrix 0 00 -1
c*cy ChCo Cory et al. have shown how this problem can be overcome
p =[Pyl = ( che, cic, ) : [3] (2-4). The ideal density matrix (Eq. [6]) can be decomposed a

the sum of four product operators

which can then be decomposed as a sum of the four Pauli basis
states; E, I, |y, andl,. 00)(00] = 3(GE + I, + S, + 21,S,), [8]
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and this sum (ignoring multiples of the unit matrix as usuatp decompose the corresponding density matrices directly. |
can be assembled using conventional NMR techniques. #ns case

alternative approach, due to Gershenfeld and Chu&hg (

works by selecting four states from within a set of spin

states arising from a larger spin system. With a careful

choice of states it is possible to find four levels whose

relative populations correspond to those |60)(00, and

these levels can be used as a pseudo-two-spin system. Whil

this approach is elegant, it is difficult to apply in practice

and has not been widely used. A third approach, called

temporal averaging6), is conceptually related to Cory’swhich is a mixture of longitudinal two-spin order am2iQ,

approach, but uses phase cycling instead of field gradientsitsuble-quantum coherence.

select the desired state.

Superpositions can be treated in much the same way, i Giobal Phase Shifts

they are not directly related to coherences in any very simple

way. For example, consider the stal®0f + [01))/\V/2, in One important consequence of the density matrix descrip

which the first spin is in stat{®), while the second spin is in ation of NMR quantum computers is that it is completely

superposition of states. The corresponding density matrix dagensitive to global phase shifts. In general, the wavefunc

be directly decomposed, tion of any isolated system can be multiplied by an arbitrary
phase shift without any observable consequences; that i

=2GE+21,S,+ 2,5, - 21,S), [12]

vl O O NIk
o oo ©
o oo ©
Nk o O MR

L the statesy) and|y’) = €'¢|y) are indistinguishable. In-
5 3 00 deed, the absolute value @f is completely meaningless,
1149 ¢ 11 although it is possible to determimelative values of¢ for

2 2 =3GE+ I+ S+ 21.5), [9] otherwise indistinguishable states by interference experi
0000 ments.

0 00O

In the density matrix description of a state, such global
phases are not preserved, as
but a more subtle approach is to note tHa@Y + [01))/\/2 can
be written as a product of one-qubit states

[’ = €y (ple™ = [l (13]

100) +F‘01> = |0>(|0>: ) _ [10] Thus global phases have no discernable effect in any NME
2 2

v v experiment and can be completely ignored. This is fortunate, &
most NMR pulse sequences create global phase shifts,

The corresponding density matrix can also be decomposedcussed below, but as such phase shifts are glolyal, they

a direct product of Egs. [4] and [5]: can be neglected.

2. ONE-QUBIT GATES

—_
o r
o o

~

—_

NIE NI

NI NI

=GE+1)XGE+S) . . _ .
One-qubit gates act to modify the spin state of a single

nucleus and thus correspond to rotations in single-spin sut
=2CE+1,+S+21,S). [11] spaces. Any rotation of this kind can be achieved using RI
fields, and so these gates are relatively straightforward. Th

) ) _ _ gates can be implemented using selective pulses, in which ca

does not correspond directly to an NMR coherence, but rathgiich case the gate is simultaneously applied to a large numb
to a complex mixture of coherences and populations. FQif separate nuclei. In this latter case the gate is more proper

this kind, as such states can be easily obtained from staggs;s affected.

like EqQ. [6].

Finally, we consider superpositions of the forn®0} +
|11))/\/2, which cannot be broken down into a product o
one-qubit states (such states are normally referred to as entarFhe simplest one qubit gate is thet gate (3), which is
gled states). As such states cannot be factored, it is necesse@ll known from classical computing (thu®T is a classical

?.1. The NOT Gate
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one-bit gate, as well as a one-qubit gate). This gate, which @&. The Square Root of NOT

shall callN, implements the rotation .
The square root afot gate,V, is a purely quantum mechan-

ical gate, in that it has no classical equivalent. As the nami
|0) _N 1) implies, V has the property

|1) — |0). [14] VZ=VV =N, [20]

This can be described more compactly using a transformati@nd so an obvious implementation is a 9Q%pulse,

matrix
. 1 1 —i
0 1 7|77/2Ix=7< . ) 21
o= (0 0) s =l =

where the symbol on the left signifiesvar gate in a quantum QOnce again this is equal to the “ideal” form,
circuit (19). Clearly this gate can be implemented using a 180°
I, pulse, as 1

| i(lltii 1112)' [22]
em=( S 7). [16]

up to a global phase.

. . The effect ofV is to take an eigenstate to a superposition of
and this matrix has the correct form up to a global pha% g perp

. N Igenstates. For example,
change. This global phase term is irrelevant, as the overa??J P

phase is not an NMR observable quantity, and thus a 1380°
pulse provides a good implementation ofier gate. [0} AN (joy — i|1>)/\,5. [23]
As the NoT operation is simply an inversion, it is hardly

surprising that it is implemented by a 180° inversion pulse. It ) i
might seem that any inversion pulse, such a 1§0Would be This emphasises the quantum mechanical natuké ab such

suitable, but this is not the case. For example, superpositions do not have classical equivalents.
Pulses with other flip angles can be treated in much the sarn
way: for example, a 60P, pulse is equivalent to a cube root of
e iy = < 2 _(1) > [17] NoTgate. This is not particularly interesting for one-qubit gates
but becomes more interesting when comparing two-qubit logi
gates with spin state selective excitation sequences.
performs the transformation

2.3. The Hadamard Gate

10y —[1) The square root ofioT is not unique in converting eigen-
|1) — —|0). [18] states to superpositions: any 90° pulse will have a simila
effect, as will a number of other pulse sequences. One partic

This is not a simple inversion, as it also negates the sign of tH@ry interesting sequence would be one corresponding to th
|1) state. This is not very important when the gate is applied ff2damard gatesi, which performs the rotation

a system in an eigenstate, but is important when the gate is
applied to a superposition. Consider, for example, the super-

position (0) + |1))/\/2, for which 10) —= (0} + [1))/y2

. 1) — (o) = [1))/ 2. [24]
0y + 1) —[0) + |), [19]

This has two useful properties. First, it tak@sto a completely
while a 180°1,, pulse would give—|0) + |1), a quite different uniform superposition, that is, to a state where the coefficient
state. This should not be surprising, as superpositions amefront of |0) and|1) areidentical. SecondH is self-inverse,
closely related to NMR coherences, aipdandl, pulses can so applyingH twice is equivalent to doing nothing.
have quite different effects, depending on the relative phases oH can be implemented in NMR using an off-resonance
the pulse and the coherent state. pulse, as
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, 1 —i —ij own right 22—24), but this combination is both convenient
—im(Ix+1)2 — . .
e = il [25] and simple to describe.

. . . _ ... 3.1. The Controlled-NOT Gate
which has the desired form, ignoring a global phase shift as

usual. Alternatively, this can be implemented using a three-The fundamental two-qubit gate is the controllesr gate,

pulse sandwich20), such as which applies avot gate to one qubit (the “target”) if another
qubit (the “control”) is in stateg0). It can be described as
451,-1801,-451_,. [26] follows:
1 000
When implementing quantum algorithms on NMR quantum 01 00 30
computers, it is often easier to replace the Hadantéstly the 10 0 0 1 [30]
pseudo-Hadamard operatdr, which has the form 0010
A variety of methods for implementing this gate have beer
1 11 . o -
h=-"7( _1 1 [27] described, but it is more useful to consider a general approac
V2 to gates of this kind. It is well known in qguantum computation

that controlled gates, such as the controNed, are related to
This operation takef) to a uniform superposition d0) and controlled phase shifts by the Hadamard transform. For exan
|1), just like H, but it is not self-inverse. This can be imple-ple, a controlledvor gate can be replaced by the three-gate
mented using a Sippulse. In many algorithms, a pair &f network
gates can be replaced by ongate and oné* gate; this last

gate is easily implemented as a:%ppulse. Considered as an _ 31
NMR operator, thed sequence performs the rotation - ’ [31]

H H whereH are one-qubit Hadamard gates, amds given by
l,—— Ik —— 1, [28]
100 O
while h performs the more conventional rotation 010 0
™=l o001 o] [32]
h 0 00 -1

L s, [29]

which performs the transformatidhily — —|11), while leav-
ing other basis states unchanged.
When implementing controlled gates in NMR pulse se-

All the gates descnbeq abov_e are one-qubit gates: in N ences, it is simpler to replace the Hadamard gates by pseud
terms they perform rotations within the subspace correspo Gdamard gates (selective ;’Spulses on the second spin), as
ing to a single spin. If implemented using hard pulses they ca% '

. i i scribed above. Hence a general controlled gate can be ir
in general effe_ct _seyeral spins, but the overall effect is that ea@ mented in NMR using the network
spin rotates within its own subspace, and the operation can

decomposed as the product of two or more one spin operations. I

True two-qubit gates correspond to rotations within a subspace - [33]
corresponding to two spins and cannot be decomposed into a %h H ¢ H h I_

set of one-qubit gates. These gates lie at the heart of quantu . .

computation, as they provide conditional dynamics; that is, t ere¢ is a general controlled phase shift

state of one spin can become dependent on the state of another

3. TWO-QUBIT GATES

e

spin. 1 00 O

Here we concentrate on the controlleor gate, which plays & = 0100 [34]
a central role in the theory of quantum computation. It can be 001 0
shown that the combination of a complete set of one-qubit 0 0 0 €’

gates (that is, any arbitrary rotation in Hilbert space) and the

controlledwor is universal (21); that is, these gates may bewhich performs|11) — €'¢|11), while leaving other basis
combined to produce any other gate. Other sets of universtdtes unchanged.

gates exist (indeed, some two-qubit gates are universal in theiilhis general form for controlled gates in NMR should not be
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a surprise, as there is a close link with composipilses. Itis 3.3. The Controlled Square Root of NOT
well known thatz-pulses can be replaced by three pulse sand-
wiches @O0, 29; for example, af, pulse can be replaced by
90_,6,90,. Similarly, by cyclic permutation of axes, @,
pulse can be replaced by 909,90,, which is equivalent to
h~16,h. Since avot gate (a 180 pulse) can be implemented as

an inverse pseudo-Hadamard, followed by a 180° phase shift, (45° 1,)(45° S)(—45° 21.S,)). (38]
followed by a pseudo-Hadamard, it is hardly surprising that a

controllednot gate can be implemented in much the samEhis can be achieved in much the same wayraEq. [37]),

Implementation of the controlled square rootnafr gate is
simple using the approach outlined in Eqgs. [33] and [34], with
¢ = 7w/2. The controlled phase shift is simply implemented as

way, but using a controlled phase shift. with the 90°_y pulse replaced by a 4@ pulse and the coupling
periods reduced to 38
3.2. Controlled Phase Shifts Note that there is a close relationship between this gate an

the spin state selective excitation sequen@g 27 which

Controlled phase shifts, such ds(Eq. [34]), are relatively A X
simple to implement, as they can always be decomposed agaé/e been suggested as a method for simplifying E-COS

product of diagonal operators. For example spectra. Clearly, any other spin state selective pulse can t
' ' created in a similar manner.

d=exdf—i X1p X (-GE)+1,+S-2,8)].  [35] 4. THREE-QUBIT GATES

The last three terms are straightforward, but the first term is” Wide variety of three-bit gates have been investigated, bu

difficult to obtain, as it requires a Hamiltonian proportional t8€ Will confine our discussions to the Toffoli gat&3, or

ZE. This is not, however, important, as this term simpl§ontrolled-controlledior. This takes the form

imposes a global phase shift and as such can be ignored. For

the remaining three terms] &, is proportional to the scalar

coupling Hamiltonian, whild, andS, can be implemented as —

periods of free precession or by using compogirulses.
For example, the matrixr, which lies at the heart of the =

controllednoT gate, can be implemented as @

[39]

=N eNelNoNolele N
[eNeloNoNelel "
S oo oo~ OO0o
S o oo~ OOO0O
S OO, OO O O
SO OO OOO
—_— O OO o OO0

—_— o OO O OO

(90° 1,)(90° §)(-90° 21,S)), (36]

)

which itself can be achieved in a variety of ways. The thre&nd plays a central role in the theory of classical reversible
terms commute and so can be applied in any order, while t4Mmputation as it can be shown to be universal (that is, an
|, andS, terms can be implemented by free precession or pgversible classical logic circuit can be constructed entirely ou
any of a wide variety of composite pulses; similarly, when thef classical Toffoli gates).

whole pulse sequence is put together it is often possible tolt might seem that this gate could be implemented usin
combine or cancel individual pulses. One possible impleme#ouble-controlled phase shifts,

tation is the pulse sequence

[40]

90X—907y—90x_%_180x_%’ [37] M:%thﬂth_’

where all pulses are applied to both spins, but there are madnyt while the above circuit is indeed correct, this approach i

other possibilities. not practical. The double-controlled phase shift matsbgan
Just like simple one-qubit gates, two-qubit controlled gaté$ decomposed as

can also introduce global phase shifts, but as long as these are

global and universal, that is, they are applied to the whole im )

wavefunction and not just the spins participating in the gate T = exp[ ) GE-1,-R, = §

and they are applied irrespective of the state of the control bit,

such phase shifts can be ignored. This is indeed the case: + 2I,R, + 21,S, + 2R,S, — 41,R,S) [41]

conceptually these phase shifts can be thought of as arising

from the lack of a;—E term in controlled phase shift gates andbut this decomposition cannot be used as a guide to imple

thus have the desired properties. menting 7, as there is no NMR Hamiltonian directly corre-
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sponding to 4,R,S,. For the same reason, it is not possible to More speculatively, it may be possible to use quantum erro
directly implement a double-controlled square rootiof, that correction codes29-3]) to reduce the effects of spin—spin
is, a doubly spin state selective excitation sequence. relaxation upon NMR spectra. Initial experiments in this di-
It is, however, possible to implement these gates by usingction 82) suggest that error correction does work in NMR
more complex networks of logic gates. Indeed, it has beerperiments, but that it is unlikely to have much practical
shown that the combination of a controlleds gate and a set significance; this assessment may, however, prove too pes:
of general one-bit gates is universal), so that any other gate mistic.
can be constructed from them. This process is even simpler if
the set of basic gates is slightly expanded; for example, a

. . . 6. CONCLUSIONS
Toffoli gate can be implemente@8) using the network

NMR provides an excellent technology for implementing
,—L\ small quantum computers and for demonstrating the basi

= N N . [42] properties of quantum computation. Unlike some other ap

|Jj ,—L\f r~ proaches, the theoretical description of NMR pulse sequence

N s v 4 is highly developed, and many potential problems in the im-
o . plementation of quantum computation have already bee

It should be noted that while it will be difficult to constructgyed. In particular, it is simple to implement a universal set
a true .Toffoli gatg, it is relatively simple _to cons_truct ant gates, that is, a set of gates which can be combined t
approximate T_offol| gate, whose transformation matrix has ﬂb‘?oduce any desired logic circuit. This approach has alread
same underlying form as Eq. [39], but where the nonzefen ysed to implement a variety of simple algorithms, and |
matrix elements are not all equal to unity. Such a gate Wagoy|d soon prove possible to extend this approach to mor
demonstrated early o2)and can be used instead of a true gatéaomplex systems: while liquid state NMR is unlikely to pro-

in some situations Wh.ere itis the last gate in the logic networlye a route to a general purpose quantum computer, it is likel
such as error correctior29-32). to remain a leading technology for several years to come.

5. APPLYING LOGIC NETWORKS IN NMR
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